4.2 Aplicaciones i Cardinals
-
1.
Quin de les següents relacions entre i és una aplicació d’ en ?
-
(a)
, i
-
(b)
i *
-
(c)
i
-
(d)
i
-
(a)
-
2.
Es defineix l’aplicació mitjançant . Llavors,
-
(a)
-
(b)
-
(c)
-
(d)
Cap de les anteriors és certa *
-
(a)
-
3.
La gràfica d’una aplicació és
llavors:
-
(a)
és injectiva
-
(b)
és exhaustiva
-
(c)
és bijectiva *
-
(d)
és exhaustiva
-
(a)
-
4.
Considerem les aplicacions: definida per
i definida per . Llavors, quin de les següents afirmacions és falsa?
-
(a)
és bijectiva i
-
(b)
és bijectiva i *
-
(c)
no és aplicació
-
(d)
és injectiva i
-
(a)
-
5.
Sigui una aplicació i suposem que i . Llavors:
-
(a)
Si és injectiva, llavors *
-
(b)
Si és exhaustiva, llavors
-
(c)
Si , llavors és bijectiva
-
(d)
No pot ocórrer que
-
(a)
-
6.
Si són aplicacions d’en tals que i . Llavors:
-
(a)
-
(b)
*
-
(c)
-
(d)
-
(a)
-
7.
Sigui una aplicació i considerem i , llavors
-
(a)
-
(b)
-
(c)
*
-
(d)
-
(a)
-
8.
Efectuant una mostra de 1000 individus s’observa que mengen peix i carn però no ous 60, peix i ous però no carn 40, carn i ous però no pescat 30, només pescat 50, només carn 40 i només ous 30. Tots mengen carn, ous o peix. Quants mengen peix?
-
(a)
900 *
-
(b)
750
-
(c)
800
-
(d)
Cap de les anteriors
-
(a)
-
9.
En una classe de 100 alumnes que s’han examinat de matemàtiques i Física es coneixen els següents resultats: No han aprovat cap assignatura 20 alumnes. Han aprovat les dues assignatures 25 alumnes. Han aprovat el doble d’alumnes Matemàtiques que Física. ¿Quants alumnes han aprovat Matemàtiques?
-
(a)
10
-
(b)
20
-
(c)
35
-
(d)
45 *
-
(a)
-
10.
En el conjunt dels nombres naturals menors que 500, ¿quants números cal no siguin múltiples de 2, ni de 3, ni de 5?
-
(a)
120
-
(b)
134 *
-
(c)
100
-
(d)
Cap de les anteriors
-
(a)